
61

61

Open Source Web Mapping: The Oregon Experience
By David Percy

Portland State University
Department of Geology

1721 SW Broadway
Portland, OR 97201

Telephone: (503) 725-3373
Fax: (503) 725-3325

e-mail: percyd@pdx.edu

SUMMARY

Open source tools have enabled a superior level of 
productivity for our online interactive map data delivery 
efforts. At Portland State University (PSU), we have de-
livered a web-accessible interactive map of the geology of 
Oregon since 1999. We also began delivering glacier data 
and coastal data in the ensuing years as it became obvious 
that all scientific data needed a web presence. Initial ver-
sions of our interactive web maps were based on MapOb-
jects, followed by ArcIMS, both of which are products of 
ESRI, the dominant provider of proprietary GIS software. 
As more scientific data needed to be delivered via the In-
ternet, the limitations of ESRI’s software became evident, 
and the search began for better solutions.

Eventually, a new direction was established using 
Open Source software, which allows for a greater degree 
of customization and the transfer of existing skills in web 
design. Since PSU has an expert group of developers that 
use open source tools, such as PHP and MySQL, the train-
ing was minimized. Many of the skills that are already 
used for other web applications are directly transferable to 
web mapping when we use open source tools. Addition-
ally, we have a culture of Open Source software use and 
development at PSU and, in general, within the state of 
Oregon, so this direction of development makes sense on 
many levels.

Overall, this effort has resulted in a web-mapping 
framework that provides considerably faster web page 
updates than its proprietary counterparts. Additionally, we 
have the ability to re-use components from applications, 
developed initially for certain organizations, to solve new 
problems for other organizations. Each time we initiate 
a project, we consider how it can benefit the larger goals 
of the web-mapping framework, which is essentially to 
provide feature for feature replacement of our proprietary 
competition, and thus everyone benefits.

BACKGROUND

Since Linux and Apache are supported on our campus 
as the defacto web platform, it is obvious that, to mini-
mize the support required, we should use this platform. 
Mapserver was developed by researchers at the University 
of Minnesota under an NASA grant and is a mature server 
side application for delivering map data. PostGreSQL is 
an open source project that traces its roots to UC Berke-
ley, but is currently maintained in Germany. It is a hybrid 
relational-object oriented database, similar in functional-
ity to Oracle. PostGIS, which was developed by Refrac-
tions Research (an open source consulting company in 
Victoria, BC), is a set of extensions that enhance Post-
GreSQL to give it a full set of GIS capabilities. PostGIS 
implements the full set of “OpenGIS Simple Features for 
SQL” capabilities as specified by the Open Geospatial 
Consortium. We refer to this mapping platform as LAMP 
for Linux/Apache/Mapserver/PostGIS.

METHODS

Once an organization has decided to use this set of 
open source mapping tools, they must decide how to de-
liver the data in an interactive web application. The previ-
ously enumerated tools provide the back end for web data 
delivery, but a front-end is needed to allow the end-user to 
interact with the data in a web browser.

Several mature web-mapping frameworks exist, but 
on close examination, it was clear that some had the patina 
of an older web application. That is, applications on the in-
ternet mature and age quickly, and new developments also 
happen quickly—the term “internet time” has currency 
because it is true that things happen rapidly on the internet. 
Thus, even though we could use one of the existing map-
frameworks, that would not mean that it would be as func-
tional as something developed with an eye to the future.



62	 D�G�TAL	MAPP�NG	TECHN�QUES	‘06

Initially, we considered using one of the existing 
web-mapping frameworks. There are several robust ap-
plications in existence such as Chameleon, Mapbuilder, 
and Ka-Map. After examining these mapping frameworks, 
which were already deployed, and in light of the previ-
ous notes and the ascendency of Web 2.0 and AJAX, we 
decided to develop our own. The functional requirements 
were to zoom/pan, query, turn off and on thematic layers, 
and dynamically resize the window to maximize map 
area. In a single weekend of development, several PSU 
graduate students wrote a new framework. One year later, 
the resulting product was named Map-Fu and became its 
own open-source project on Sourceforge in December, 
2006 (http://sourceforge.net/projects/map-fu/).

In the meantime, several other mapping front-end 
products have become available that provide the same 
types of features we developed in Map-Fu. Thus, there 
are many options for the open source enthusiast to pursue. 
The main cautionary note is for the potential user to fol-
low the listserve of any particular project for a few weeks 
to determine how active the community is. A healthy open 
source project will have several posts to the listserve ev-
ery day, usually even 10 to 20. A project that has not had 
any posts to the listserve for more than a month is prob-
ably dead or perhaps mature, yet used only by one group.

Regardless of what front-end an organization 
chooses, the first step is to develop a mapfile Mapserver 
can read and generate images from. The mapfile will con-
sist of names of data sources such as shapefiles for vector 
data and geotiffs for basemaps. It will also specify how to 
symbolize individual classes of data, for example a “Qal” 
unit would likely be displayed with an RGB value of 255 
255 0.

In terms of optimizing data for web delivery, a few 
tasks are required. Large raster data sets need to be tiled 
and have internal overviews built. This is done via a series 
of command line operations that utilize an open source 
library known as GDAL. To build internal tiles we issue a 
command like this:

gdal_translate -of GTiff -co “TILED=YES” shaded_
relief.tif shaded_relief_tiled.tif

After this, it is useful to build internal overviews 
(similar to “pyramids” in ArcMap) using a command like:

gdaladdo shaded_relief_tiled.tif 2 8 32 128

Note that the first command, gdal_translate, creates 
a new file, while the second command, gdaladdo, works 
“in situ” (without creating a new file). Also, the execution 

order of commands matters. Overviews are not copied 
during a gdal_translate operation, so the user should build 
tiles first, followed by overviews, as illustrated above.

To optimize the vector data, the shapefiles are im-
ported to the open source database PostGIS, which is an 
extension of PostGreSQL. From here a command line 
function is executed that produces a lower resolution data 
set for initial delivery at low resolution (“zoomed-out”) 
levels. It uses the conversion from postgresql to shapefile 
with the addition of an SQL operation. In this example, 
we have a table named lithology in the database named 
geology. We request that the output be a shapefile name 
simplelith and the sql command simplify the vertices 
down to one every 1000 feet:

pgsql2shp -f simplelith -h localhost -u mapserve geol-
ogy -s “select simplify(the_geom, 1000) as the_geom, 
gnlith_u from lithology”

Techniques like this can considerably speed up the 
delivery of web-accessible data. While it may seem 
strange to do such things, it is simply the reality of pro-
viding data on the internet, where delivery times mean 
the difference between users accessing your site or simply 
abandoning it for lack of responsiveness.

With regard to returning query results, we have im-
plemented an approach that uses the geospatial database 
PostGIS. When the user clicks on the map with the “info-
query” tool, the coordinate pair they clicked on is sent to 
the database, which then returns all objects from all tables 
that intersect the point that was clicked. We then have 
a query handler that outputs data related to the objects, 
depending on which layers in the view are on or off.

It is relatively trivial at this point to set up an Open 
Standards based output system. Note that Open Standards 
are different from Open Source; in the first case we are 
talking about a committee of vendors and organizations 
that decide upon a protocol for data interoperability, while 
in the latter we refer to a formal system by which users 
are allowed to view and legally modify and redistribute 
the source code of programs.

The Open Standards protocols that are of interest are 
Web Map Services (WMS) and Web Feature Services 
(WFS), though the suite of open standards-based web ser-
vices are collectively called Open Web Services (OWS). 
The entire set of OWS is still under development, though 
it is maturing rapidly and there are some viable uses now. 
By inserting certain metadata statements into the same 
mapfiles we use for our interactive maps, we can simulta-
neously serve as OWS providers. This allows our data to 
be aggregated by others into other useful web-interfaces.



63OPEN	SOURCE	WEB	MAPP�NG:	THE	OREGON	EXPER�ENCE

CONCLUSION

We have had great success and satisfaction using 
open source tools for our web delivery of scientific 
data. Using open source tools has given us the ability 
to leverage existing strengths, as opposed to having 
to learn techniques that only apply to one monolithic 
proprietary software program. We also have the ability 

to use data from other OWS providers, such as NASA or 
the USGS, as base layers on which to overlay our data. 
In the end, we assume that these “stove pipe” solu-
tions we are building will be converted into pure open 
standards based formats like WMS and WFS, such that 
any standards-based interface can integrate our data with 
whatever other data they deem useful to addressing the 
situation at hand.




